Research on Privacy Preserving on K-anonymity

نویسندگان

  • Yun Pan
  • Xiao-ling Zhu
  • Ting-gui Chen
چکیده

The disclosure of sensitive information has become prominent nowadays; privacy preservation has become a research hotspot in the field of data security. Among all the algorithms of privacy preservation in data mining, K-anonymity is a kind of common and valid algorithm in privacy preservation, which can effectively prevent the loss of sensitive information under linking attacks, and it is widely used in various fields recent years. This article based on the existing K-anonymity privacy preservation of the basic ideas and concepts, K-anonymity model, and enhanced the K-anonymity model, and gives a simple example to compare each algorithm; finally, it prospected the development direction of K-anonymity on privacy preservation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Preserving Data Publishing Based on k-Anonymity by Categorization of Sensitive Values

In many organizations large amount of personal data are collected and analyzed by the data miner for the research purpose. However, the data collected may contain sensitive information which should be kept confidential. The study of Privacypreserving data publishing (PPDP) is focus on removing privacy threats while, at the same time, preserving useful information in the released data for data m...

متن کامل

A Survey of Privacy Preserving Data Publishing using Generalization and Suppression

Nowadays, information sharing as an indispensable part appears in our vision, bringing about a mass of discussions about methods and techniques of privacy preserving data publishing which are regarded as strong guarantee to avoid information disclosure and protect individuals’ privacy. Recent work focuses on proposing different anonymity algorithms for varying data publishing scenarios to satis...

متن کامل

A Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes

Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing...

متن کامل

Enhanced P-Sensitive K-Anonymity Models for Privacy Preserving Data Publishing

Publishing data for analysis from a micro data table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the k-...

متن کامل

An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling

In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012